Тонкопленочные солнечные батареи: гибкие, складные, цилиндрические

В чем разница между тонкопленочными солнечными батареями и обычными

На самом деле здесь разница несущественная, только в материалах, из которых они изготовляются. Чтобы изготовить тонкую пленочную батарею используются специальные полупроводники из меди-индия, селенида и теллурида кадмия.

тонкопленочные солнечные батареи

Принцип работы никак не отличается, есть только одна разница – наносить такие полупроводники можно непосредственно на пленку. Поэтому она не гнется и даже скручивается, чего нельзя сказать за классические солнечные батареи. Почитайте о современных батарейках с супер быстрым зарядом.

Тонкопленочные солнечные батареи преимущества

Батареи такого типа получили несколько серьезных преимуществ, которые смело можно назвать существенными. Итак, в какие плюсы и тонкопленочных батарей:

  1. Маленький вес. Такие батареи выполнены из очень легких материалов, поэтому устанавливать и работать с ними – это одно удовольствие.
  2. Полупрозрачность. Именно такое свойство позволяет устанавливать их даже на окна. В таком случае часть света будет идти в помещение, а другая часть, преобразовывая электричество.
  3. Гибкость. Такие панели можно устанавливать практически на любую плоскость, изогнутое состояние не нарушает работоспособности.
  4. Ударопрочность. Пленка остается работоспособной во время сильного града, падения на землю и т.д.

гибкиесолнечные батареи

От плоской формы к цилиндрической

Цилиндрические солнечные батареи
Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $.

До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.

Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии. Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым.

Многопереходные солнечные элементы

В большинстве производимых в настоящее время солнечных элементах реализован один p-n-переход. То есть свободные электроны в таком элементе создают только те фотоны, которые обладают энергией больше или равной ширине запрещенной зоны. Чтобы преодолеть это ограничение учеными был разработан новый вид солнечных элементов, получивших название каскадные элементы. Они имеют многослойную структуру, состоящую из солнечных элементов, ширина запрещенной зоны которых различна.

Самые перспективные гибкие солнечные батареи, изготовленные с использованием каскадных элементов, имеют 3 p-n-перехода. Верхний слой формируют из сплава на основе a-Si:H, для второго используют сплав a-SiGe:H, содержащий 10-15% германия, для третьего слоя процентное содержание германия в сплаве увеличивают до 40-50%. С каждым последующим слоем ширина запрещенной зоны уменьшается, поэтому каждый следующий слой поглощает те фотоны, которые прошли через предыдущий. В таблице ниже представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Теоретическое значение КПД Ожидаемое значение КПД Реализованное значение КПД
1 p-n-переход 30 27 25,1
2 p-n-перехода 36 33 30,3
3 p-n-перехода 42 38 31,0
4 p-n-перехода 47 42
5 p-n-переходов 49 44

Материалы для изготовления тонкопленочных источников.

Тонкопленочные солнечные батареи могут быть выполнены из следующих материалов:

  • аморфный кремний,
  • сульфид кадмия,
  • индий,
  • галлий,
  • кристаллический кремний.

Производных данных материалов очень много и все они используются в производстве батарей. Из-за большого объема сульфидов и оксидов изучение их способностей в области солнечной энергетики затруднено, но работы ведутся во всех направлениях.

Гибкая солнечная батарея
Тонкоплёночные батареи уникальны тем, что имеют необычную в данной области особенность – вырабатывать электрическую энергию при отсутствии прямых солнечных лучей. Это означает, что в пасмурный или короткий зимний день, солнечные батареи на подобной основе могут вырабатывать до 15% энергии сверх положенной нормы. Это не только позволяет таким батареям обойти стандартные солнечные элементы, а полностью обогнать их в своем развитии. К тому же тонкоплёночные солнечные батареи открывают дорогу подобным модулям в уникальных туманных районах нашей планеты и в местах, где пасмурная погода составляет основной процент всех метеоусловий. К тому же тонкоплёночные солнечные элементы могут найти свое применение в местах с повышенной запыленностью и увеличенным наличием микрочастиц в воздухе.

Рекомендуем:  Парокапельные обогреватели: принцип работы, плюсы и минусы, особенности эксплуатации

Преимущества и недостатки солнечных устройств.

Существенным недостатком уникальных батарей в том, что их площадь в 2-2,5 раза больше стандартных кремниевых поликристаллических модулей. Имея не очень высокий КПД, тонкоплёночные солнечные батареи не выгодно использовать в компактных системах. Благодаря этому недостатку, основное применение такого типа модулей лежит в области больших световых установок мощность более 10-15 кВт.

Что же заставляет людей использовать тонкоплёночные солнечные батареи в быту?

Есть несколько ответов на этот вопрос:

  • доступность данного источника энергии,
  • бесперебойная работа, особенно в солнечных странах,
  • автономность, то есть применение в любом месте не зависимо от наличия сопутствующих факторов,
  • абсолютная экологичность такого типа добычи энергии, по сравнению с устоявшимися источниками,
  • постоянно уменьшающаяся стоимость комплектов подобных модулей, в связи с постоянными усовершенствованиями,
  • неумолимо растущий КПД батарей, помогает им составлять конкуренцию стандартным источникам энергии,
  • абсолютная доступность для любого человека, так как установка подобных устройств не требует никакого согласования, а в некоторых странах влечет за собой дополнительные государственные субсидии, поощряющие  жителей пользоваться экологически чистыми источниками.

Многим может показаться, что установка солнечных модулей под силу исключительно состоятельным людям, но это далеко не так. Не приходится спорить, что начальный этап потребует немалых вложений на покупку и обустройство жилища такими источниками бесплатной энергии. Но, по прошествии некоторого времени, экономия начнет давать свои результаты, а если учесть фактор постоянного повышения стоимость электроэнергии, предстоящая выгода может превзойти все ожидания.

Экономия электроэнергии не заканчивается на электроприборах. Установив водяные коллекторы, которые помогут сэкономить до 70-80 % электричества на нагреве воды и отоплении, можно получить довольно достойные результаты работы. Установив солнечные батареи достаточной мощности, можно существенно пополнить семейный бюджет сэкономленными средствами в зимнее время. Дело в том, что в такие холодные времена достаточно большое количество энергии уходит на обогрев жилища. Применяя водяные коллекторы, любые солнечные батареи, даже тонкоплёночные, принесут свои плоды.

Установка тонкопленочных батарей

Стоит упомянуть и о недостатках батарей, так как данный источник имеет их предостаточно.

К ним можно отнести:

  • многие доступные солнечные батареи имеют небольшой уровень КПД,
  • любые элементы подобного типа требуют постоянного наблюдения и ухода, чтобы не снижалась производительность всего комплекса,
  • высокая температура  снижает выработку электроэнергии, а при отсутствии охлаждающих элементов в комплектах установки модулей, этот вопрос становится достаточно актуальным,
  • негативное влияние времени на мощность установок, так как со временем кристаллы перестаю выдавать первоначально заявленное количество энергии,
  • высокая стоимость всей схемы.

Мифы и реальность

Пока технология изготовления пленочных солнечных батарей не составляет реальной конкуренции поли/монокристаллическим аналогам. Прежде всего из-за дороговизны используемых материалов. Тем не менее, на ТВ, в сети и среди розничных продавцов бытует несколько  мифов о чудо свойствах этой технологии.

  • Тонкопленочные солнечные батареи могут работать в пасмурную погоду. Отчасти это правда, но правда и в том, что любые солнечные панели работают в пасмурную погоду, выдавая при этом меньшую силу тока или вольтаж, в зависимости от модели. Пленочные так же точно снижают свою производительность.
  • Пленочные батареи не снижают производительность при нагреве. Это откровенное вранье. Снижение производительности гораздо сильнее поли/монокристаллических аналогов. Поэтому при монтаже таких панелей следует обязательно предусмотреть возможность вентиляции их задних стенок.
  • Дешевле. На самом деле дороже (см. недостаток 2)
  • Могут принимать любую форму. Здесь правда, только вот толку, как показывает практика, от этого никакого. Панели располагаются в плоскости для достижения максимального эффекта.
  • Можно свернуть в трубочку и тогда свет будет поступать на них почти весь день. Действительно такое «сенсационное» изобретение приносит прирост в производительности меньше, чем использование той же площади аналогичных батарей в плоском виде.

Цилиндрический фотомодуль

Схема работы цилиндрического модуля

  • Увеличенный срок службы. На самом деле нет. Срок службы пленочной панели – 10-12 лет, в то время как поликристаллические модели служат от 15 до 20 лет.
  • Можно использовать вместо стекол в окнах. При этом улицы вы видеть практически не будете, а эффективность такой полупрозрачной панели позволит вам в течении дня от одного окна зарядить один мобильный телефон. Сомнительное преимущество.
  • Экологичность. Т.к. в батареях применяются сплавы полупроводников из индия и кадмия, то кремния используется гораздо меньше. При этом продавцы уверяют, что кремний – это вещество по вредности между ураном и мышьяком, забывая, что 1/3 земной коры состоит из него.
  • Время окупаемости. Реклама пленочных батарей говорит, что они окупаются на 2-3 год эксплуатации. На самом деле нет. Срок службы пленочных солнечных батарей (10-12 лет) и их стоимость, не позволяет им окупиться вообще при нынешних ценах на электроэнергию.

Сравнительная таблица российских, тайваньских и китайских солнечных батарей

Производитель Наименование Технология производства Пиковое напряжение, В Пиковый ток, А Пиковая мощность, Вт Габариты, мм Ориентировочная цена на российском рынке, руб.
«Телеком-СТВ», Зеленоград ТСМ-100А поликристалл 17 5,6 96 1050х665х43 8429
РЗМП, Рязань RZMP-130-T поликристалл 15,9 6,65 105 1490х670х36 14600
«Хевел», Новочебоксарск HEVEL P7 микроморфная 56,6 2,21 125 1300х1100х24 10000
Green Energy Technology, Тайвань GET-115AT2 аморфный кремний 93,9 1,22 115 1300х1100х20* 7000
Chinaland Solar Energy, Китай CNH100-36M монокристалл 19,3 5,18 100 1200х540х30 6350
Рекомендуем:  Незамерзающая жидкость для системы отопления домов - как выбрать, видео обзор

* — без алюминиевой рамки

В конечном итоге потребителю самому решать, какие панели ему выбрать. В качестве рекомендации хочется отметить, что для автономного электроснабжения дома можно порекомендовать поликристаллические модели солнечных батарей. Да, монокристаллические панели более эффективны, но не стоит забывать, что это довольно условно.

Максимальная мощность монокристаллических элементов будет достигнута лишь в солнечный день с использованием систем поворота светочувствительных элементов. Поэтому данные панели в большей степени подойдут жителям южной полосы России, где количество солнечных дней максимально. В остальных же регионах при проектировании систем автономного электроснабжения имеет смысл обратить свое внимание на сравнительно новые панели, произведенные по микроморфной технологии, которые способны преобразовывать в электричество не только солнечный ультрафиолет, но и инфракрасное излучение. Это их достоинство может с лихвой покрыть недостаток низкого КПД.

Замечу напоследок, что лично я отдал предпочтение поликристаллической панели, поскольку предназначена она для временного электроснабжения дачного домика в летний период. Отсюда следует, что планируемая нагрузка — небольшая, световой день продолжительный и солнечный. Поэтому поликристаллическая солнечная батарея в моем случае наиболее оптимальна.

Область применения аморфных модулей

Аморфные модули рекомендуется применять в следующих случаях:

  • в регионах с обычно облачной погодой (рассеянный или отраженный свет)
  • в жарком климате, когда модули обычно нагреваются более 50-60 градусов
  • если нет ограничений по площади и максимальному весу солнечной батареи
  • если нужно интегрировать фотоэлектрические модули в здание — аморфные модули практически невозможно отличить от тонированного стекла. В отличие от традиционных кристаллических, тонкопленочные модули могут быть использованы для различных дизайнерских и конструкторских решений. В дополнение к традиционной установке на крыше, прочные, стильные и изящные фотоэлектрические модули из аморфного кремния широко применяются для отделки фасадов зданий как отдельные элементы, архитектурные композиции и решения, что до последнего времени считалось невозможным.
  • если нужна частичная прозрачность модулей — аморфные модули можно делать с прозрачностью от 5 до 20% (с соответствующим уменьшением вырабатываемой мощности).

Современные аморфные модули имеют такую же деградацию, как и кристаллические модули. Производитель дает гарантию на то, что мощность модулей снизится не более 10% от номинальной за 10 лет эксплуатации, и не более 20% — за 25 лет эксплуатации. Это соответствует деградации и гарантиям на модули из кристаллического кремния.

Как упоминалось выше, тонкоплёночные модули вырабатывают больше энергии на ватт установленной мощности. Это подтверждается многолетними испытаниями солнечных модулей различного типа в Институте Высоких Температур (ИВТАН) в Москве. Результаты испытаний показывают, что на кВт установленной мощности тонкоплёночные модули в условиях Москвы вырабатывают 726 кВт*ч/кВт/год, в то время как обычные монокристаллические модули — около 690 Вт*ч/кВт/год.

Год Месяц года среднесуточный уровень инсоляции, Вт/м² TSM210SB* TSMC140 TCM200 MSW180 Canadian Solar 210Вт ELPS* GET AT2** MLT 265
2015 11 21,7 11,4 14,2 11,8 11,7 11,2 12,6 12,1
2015 12 10,9 4,6 6,6 5,1 6,1 4,6 5,5 5,2
2016 2 40,9 12,9 13,0 12,1 13,3 12,7 12,5 12,5
2016 3 108,8 61,9 55,8 68,5 68,0 66,3 66,8 55,4
2016 4 128,7 82,1 79,7 80,6 66,4 84,0 82,4 66,1
2016 5 172,1 110,6 100,1 108,8 57,8 112,2 114,0 106,8
2016 6 182,7 117,2 113,0 112,9 108,9 116,7 119,5 113,4
2016 7 172,5 115,1 112,9 108,0 106,2 111,6 116,1 108,7
2016 8 177,1 109,6 107,0 107,2 104,3 109,3 115,5 55,1
2016 9 75,8 46,8 46,8 45,1 46,0 46,3 47,4 30,9
2016 10 38,3 24,0 24,4 23,4 24,4 23,7 23,2 23,6
2016 11 23,0 10,4 12,4 10,5 9,9 8,9 10,3 10,6
ИТОГО, кВтч/кВт     706,821 685,841 693,9975 623,045 707,50095 725,8357 600,3249

*В модуле Телеком-СТВ TSM210SB используются высокоэффективные солнечные элементы SunPower. В солнечном модуле Canadian Solar также применены высокоэффективные солнечные элементы, сделанные по проприетарной технологии ELPS
**GET AT2 — тонкопленочный модуль из аморфного кремния, второго поколения (см. выше).

Видео о пленочных батареях

Типичный рекламный сюжет, где диктор рассказывает чудеса о пленочных солнечных батареях, предполагая КПД в 10%, забывая, что таких результатов пока смогли добиться только в лабораторных условиях, но никак не в промышленных образцах. Ролик будет интересен тем, кто хочет знать, как реклама пытается обмануть нас.

Метод вакуумирования

Тонкопленочные солнечные батареи

Способ предусматривает использование вакуумных камер или электронных пушек для осаждения из пара диселендов.

В принципе, использовать можно любые подходы, например, ионное распыление, но все методы имеют свои сложности, такие как образование пленки как на подложке, так и на внутренней поверхности камеры. Другая сложность связана с поставками индия, активно применяемого для изготовления плоскопанельных мониторов.

У таких устройств КПД может превышать отметку 20%.

Хотя активно развиваются панели этого типа, их востребованность невелика и не превышает 2%.

Большую популярность завоевали пленки, в изготовлении которых используется кадмия теллурид, Их КПД 16% (против 18%). Большой популярностью пользуются батареи аморфно-кремниевое. Их КПД удалось увеличить до 10%.

Способ суспензии

Тонкопленочные солнечные батареи

В производстве тонкопленочных солнечных батарей ведущими специалистами используется несколько способов для нанесения диселенидов. Наиболее распространенным является применении суспензированных оксидов металла.

Изменяя концентрацию и вязкость суспензии получают, так называемые, «чернила», которые корректируются под конкретную технологию (от трафаретного нанесения до струйного осаждения).

В качестве подложки также могут выступать разные материалы — фольга металлизированная, стекло, даже пластик. КПД применения материала при этом очень большой – 90%, а производство во много раз дешевле вакуумирования.

Достоинством метода является равномерный и однородный слой напыления, а недостатком – низкий, в сравнении с вакуумированием, КПД – 16% (против 18%).

Стоимость

Тонкопленочные солнечные батареи

Недорого тонкопленочные солнечные батареи купить можно в интернет-магазинах, адреса которых приведены в таблице:

Самые интересные достижения в мире тонкопленочных модулей

2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.

Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.

Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.

Складная солнечная батарея
Компания ICP Solar Technologies представила оригинальную складную солнечную батарею. Ее достаточно раскатать в солнечном месте и можно подключать устройство, которое необходимо зарядить. Мощность батареи 5 Вт при напряжении питания 12 В. Согласитесь, незаменимый вариант для всех туристов, хотя и не единственный. Разработкой подобных переносных СБ занимаются различные фирмы. Так не меньшей популярностью пользуется складная солнечная батарея Foldable Solar Chargers, максимальная мощность которой составляет 190 Вт.

Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты.

Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.

В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!

Подводя итоги: достоинства аморфных аккумуляторов и их дальнейшие перспективы

Итак, кремниевые солнечные батареи с уникальным свойством аморфности имеют следующие перспективные преимущества:

  1. Меньше нагреваются при высокой температуре. Следовательно, не теряют производительности, перерабатывая большее количество электроэнергии. Эффективность кристаллических модулей при сильном нагреве, как известно, резко снижается, со значительной потерей мощности.
  2. Больше вырабатывают энергии при слабом уровне света. Кристаллические солнечные батареи в условиях рассеянного светового потока уже могут перестать работать вообще. Аморфные модули в условиях дождя и облачности накапливают на 10-20% больше энергии.
  3. Они почти незаметны на зданиях.Размер их минимален, а внешний вид, похожий на пленку или тонкое стекло, легко можно скрыть или замаскировать.
  4. У них минимум брака, так как производство гораздо более простое.Кристаллические же модули свариваются между собой методом пайки. И это — до сих пор их слабое место, которое исправить невозможно.
  5. Они лучше переносят временное или частичное затенение и теряют при этом меньше мощности.

На фоне всех неоспоримых преимуществ недостаток у таких панелеи всего один, но пока еще весьма существенный. КПД у них, в любом случае, меньше, чем у кристаллов — как минимум, в 2 раза. Это является основным препятствием для их широкого применения.

Монтаж

Источники
  • https://vse-elektrichestvo.ru/poleznye-sovety/zelenaya-elektrika/tonkoplenochnye-solnechnye-batarei.html
  • https://altenergiya.ru/sun/tonkoplenochnaya-texnologiya-na-rynke-solnechnoj-energetiki.html
  • https://ekobatarei.ru/vidy/tonkoplenochnye-istochniki-energii
  • http://electricadom.com/realnoe-primenenie-tonkoplenochnykh-solnechnykh-batarejj.html
  • https://www.rmnt.ru/story/electrical/elektrosnabzhenie-pri-pomoschi-solnechnyx-batarey-obzor-paneley-na-ote.672989/
  • https://www.solarhome.ru/solar/pv/asi.htm
  • https://motocarrello.ru/jelektrotehnologii/solnechnye-batarei/1881-tonkoplenochnye-solnechnye-batarei.html
  • https://batteryk.com/kremnievye-solnechnye-batarei

Крабадам
Adblock
detector